

SDRによる 無線機ライブラリのご紹介

KOZO KEIKAKU ENGINEERING, INC

本資料の記載事項は予告なく変更することがありますので、予めご了承ください。

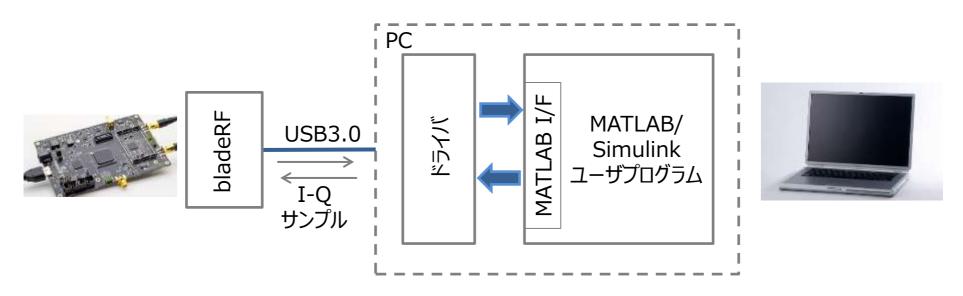
https://www.kke.co.jp

SDR無線機のメリットと利用場面

無線通信機器の開発

- ・仕様検討・評価のためのプロトタイプ開発(送信機・受信機)のベースとして利用
- ・カスタマイズサービスの提供も可能

無線通信機器の評価


- ・ソフトウェアにより容易にアルゴリズム、パラメータを変更しながら評価が可能
- ·送信機利用例:
 - フェージング適用した信号の生成、干渉信号の生成を行い、開発機器(受信機)の品質を評価
- •受信機利用例:
 - 開発機器(送信機)からの信号の受信、解析

教材·研究

- ・実信号の送受信による無線通信システムのより深い理解をサポート
- ・研究室での実験環境構築に利用

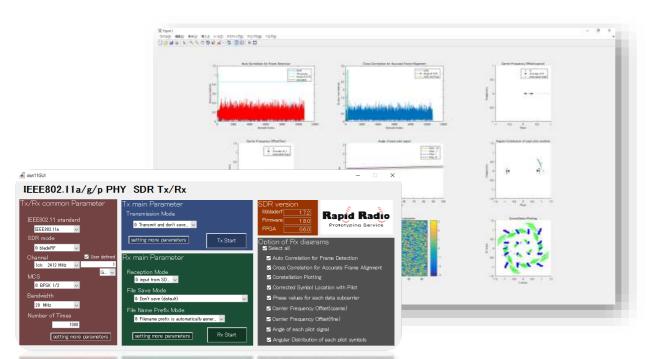
SDR無線機の構成

- PC上でMATLAB/Simulinkユーザプログラム実行※
 - DSPプログラムではIQサンプルを処理
- SDR-PC間をUSBケーブルで接続

※ 本資料でご紹介するライブラリの場合。 DSPプログラムは、SDR上のFPGAに実装することも可能です。

製品ラインナップ

- WiFi
 - IEEE802.11gのリファレンス実装
- п/4シフトQPSK
 - ARIB STD-T61のリファレンス実装 (小型衛星、タクシー無線、 防災無線等で使用)
- 次世代GMDSSシステム
 - Global maritime distress and safety system


製品をベースとしたカスタマイズ、 通信方式のご相談もお受けいたします。

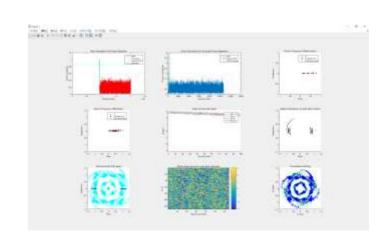
WiFiリファレンス実装

SDR-WiFi

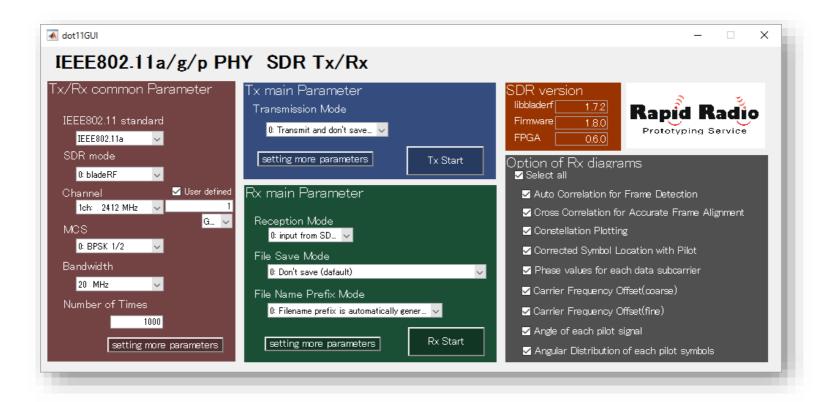
WiFiリファレンス実装

SDR-WiFi

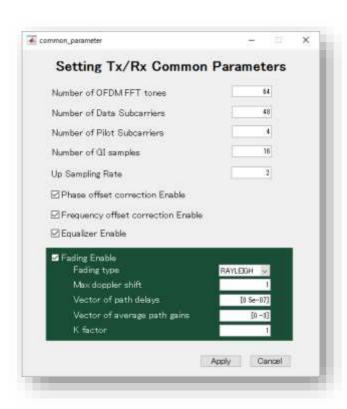
MATLAB信号処理モデル

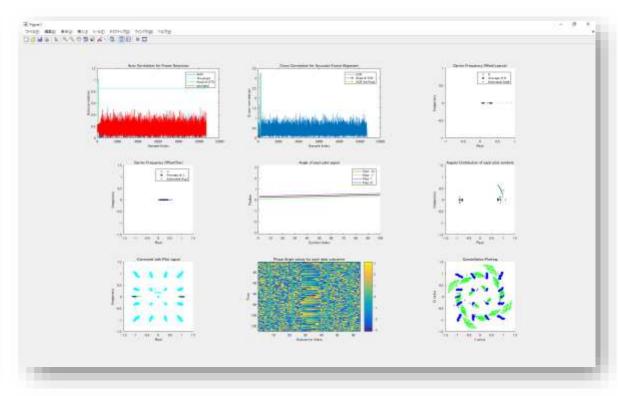

SDR-WiFiの効果と利点

- ソフトウェア無線(SDR)を用いて無線機器の実験コストを削減
 - 信号をグラフで可視化
 - 送受信、信号の集録など<mark>様々な解析</mark>が可能
- 実用にマッチしたリファレンスデザイン
 - IEEE 802.11g OFDM PHY層の全機能をソフトウェア実装
 - ソフトウェアにより柔軟なカスタマイズが可能
- 再現しにくい環境も、シミュレーション機能で実機の耐性・性能試験が可能
 - AWGN、キャリア周波数オフセット、位相オフセット
 - マルチパスフェージングシミュレーション、など

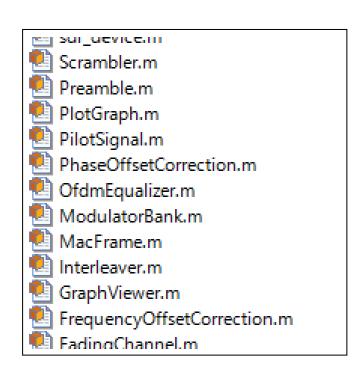

SDR-WiFiの特徴①

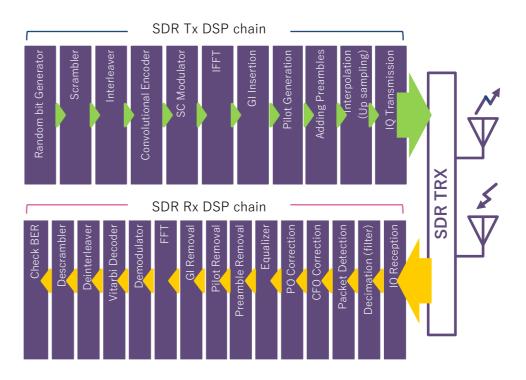
- 信号を可視化できるから、見えない無線を理解できる
 - Auto Correlation
 - Cross Correlation
 - Carrier Frequency Offset Course & Fine
 - Pilot Signal Estimation
 - Subcarrier
 - Constellation Plotting
 - Spectrum


SDR-WiFiの特徴②


- 電波を収録・再生できるから、繰り返し試験に最適
 - GUI操作による柔軟な送受信実験

SDR-WiFiの特徴③


- 再現しにくい環境でもシミュレーション機能で合成可能
 - 製品の耐久試験に!



SDR-WiFiの特徴4

- ソフトウェアで独自規格や機能を柔軟にカスタマイズ可能
 - 見通しの良いライブラリコード付

Tx Blocks

Scrambler

IFFT

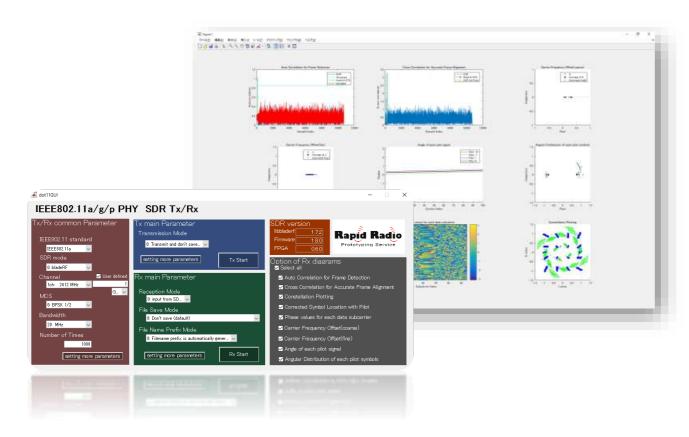
Interleaver

Bit Generator

SC Modulator

GI Insertion

Pilot Generation


IO Transmission

Adding Preambles

Interpolation/Up sampling

Convolution Encoder

Specification

SDR-WiFi

Environment

MATLAB/Simulink R2015b/R2016a **Communications System Toolbox DSP System Toolbox** Signal Processing Toolbox

Simulation **AWGN**

Carrier Frequency Offset Phase Offset Multipath Fading

Rx Blocks

IQ Reception AGC

Decimation

Packet Detection

CFO Correction

PO Correction

Equalizer

Preamble Removal

Pilot Removal

GI Removal

FFT

Demodulator

Vitarbi Decoder

Deinterlieaver

Descrambler

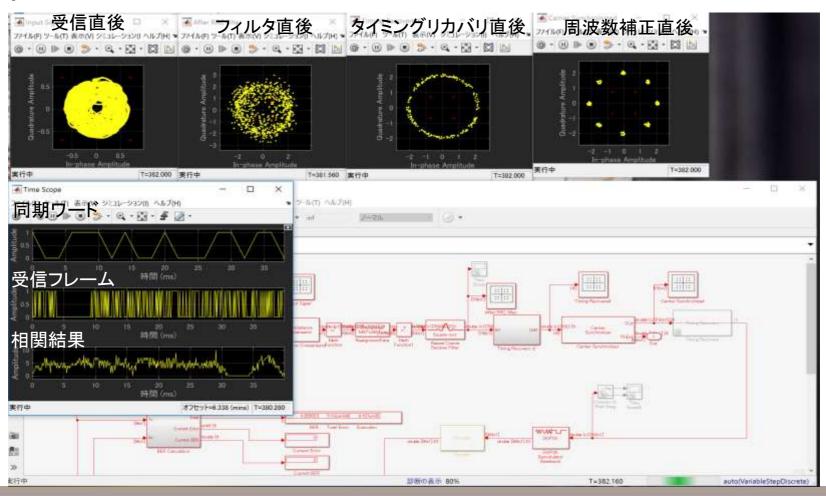
Check BER

ARIB STD-T61のリファレンス実装 n/4シフトQPSK

主な仕様

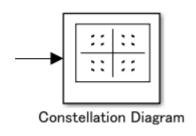
- 変調方式: π/4シフトQPSK (ARIB STD-T61)
- 伝送速度: 9.6kbps
- 信号処理プログラム (Simulinkにより実装)

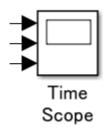
送信モデル機能 ロ フレーム生成

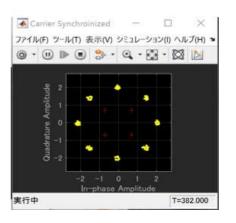

- □ 畳込み符号化
- ロインターリーバ
- □ DQPSK変調
- コサインロールオフフィルタ
- bladeRF送信インタフェース

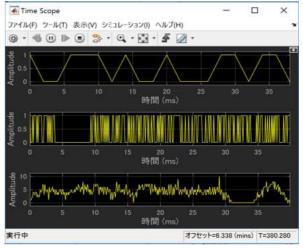
受信モデル機能

- □ bladeRF受信インタフェース
- ロ コサインロールオフフィルタ
- □ 周波数オフセット補正
- **□** DQPSK復調
- ロ デインターリーバ
- **□** Viterbiデコーダ


モデル実行例


• 受信モデル




Simulink実装のメリット

• 表示ツールによる可視化が容易

次世代GMDSSシステム

-Global maritime distress and safety system-

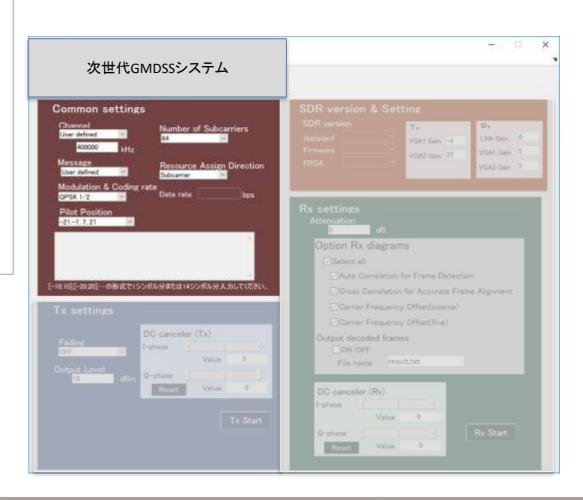
主な仕様

- 変調方式: OFDM (QPSK, 16QAM, 64QAM)
 - 使用サブキャリア数: 2,4,8,16,32,64,128,228
 - フレーム長 (400msec), フレームあたりのOFDMシンボル数(15)
- 信号処理プログラム (Simulinkにより実装)

送信モデル機能

- ロ フレーム生成
- □ スクランブラ・インターリーバ
- □ 畳込み符号化
- **□** QAM変調
- **□** OFDM変調
- ロ コサインロールオフフィルタ

受信モデル機能


- ロ コサインロールオフフィルタ
- ロ フレーム検出
- □ 周波数オフセット・位相オフセット補正
- **□** OFDM復調
- □ QAM復調
- **□** Viterbiデコーダ
- ロ デスクランブラ・デインターリーバ

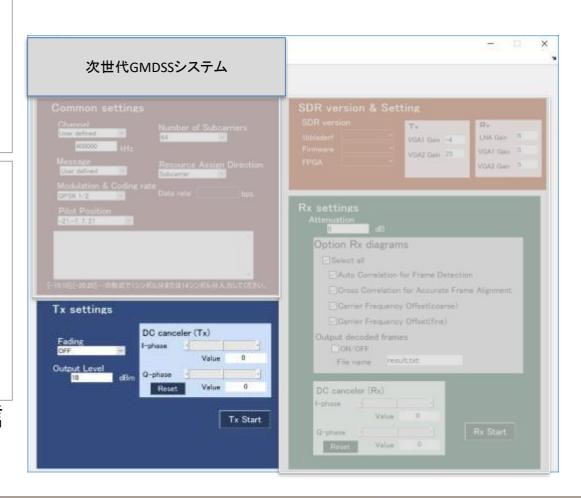
GUI設定

システム共通設定

- ・周波数 任意の周波数設定可能
- ・メッセージOFF (キャリアのみの送信可能)ファイル設定で任意のメッセージ送信可能
- ・パイロット位置 任意の位置に設定可能

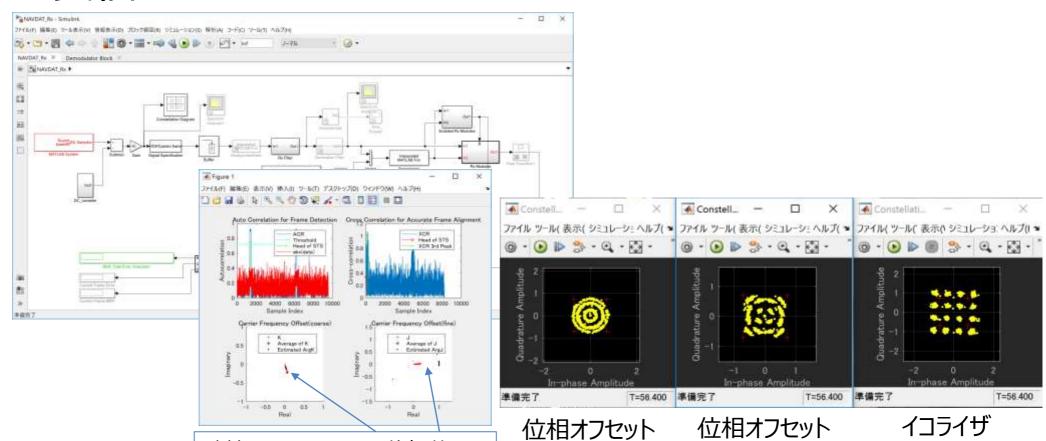
パラメータを変更しながら、受信品質を簡単に ご確認いただけます。

GUI設定


送信機設定

- ・フェージング送信信号にフェージングを適用可能
- ・DCキャンセラ 簡単な設定でDCオフセットを補正し、 受信品質向上

受信機設定


- ・グラフON/OFF グラフ不要な場合は、抑制して処理を 高速化
- ・DCキャンセラ 簡単な設定でDCオフセットを補正し、 受信品質向上

再現性のあるフェージング環境を模擬し、受信品質の評価にご利用いただけます。

モデル実行例

• 受信モデル

補正前

隣接するSTS/LTSの位相差

補正後

適用後

お問い合わせ先

構造計画研究所 SDR担当

rrp-sales@kke.co.jp

https://network2.kke.co.jp/sdr/rrp_service/

お気軽にお問い合わせください。